Na,K-ATPase α4, and Not Na,K-ATPase α1, is the Main Contributor to Sperm Motility, But its High Ouabain Binding Affinity Site is Not Required for Male Fertility in Mice

J Membr Biol. 2021 Dec;254(5-6):549-561. doi: 10.1007/s00232-021-00181-2. Epub 2021 Jun 15.

Abstract

Mammalian sperm express two Na,K-ATPase (NKA) isoforms, Na,K-ATPase α4 (NKAα4) and Na,K-ATPase α1 (NKAα1). While NKAα4 is critical to sperm motility, the role of NKAα1 in sperm movement remains unknown. We determined this here using a genetic and pharmacological approach, modifying the affinity of NKAα1 and NKAα4 for the inhibitor ouabain to selectively block the function of each isoform. Sperm from wild-type (WT) mice (naturally containing ouabain-resistant NKAα1 and ouabain-sensitive NKAα4) and three newly generated mouse lines, expressing both NKAα1 and NKAα4 ouabain resistant (OR), ouabain sensitive (OS), and with their ouabain affinity switched (SW) were used. All mouse lines produced normal sperm numbers and were fertile. All sperm types showed NKAα isoform expression levels and activity comparable to WT, and kinetics for ouabain inhibition confirming the expected changes in ouabain affinity for each NKA isoform. Ouabain at 1 μM, which only block ouabain-sensitive NKA, significantly inhibited total, progressive, and hyperactivated sperm motility in WT and OS, but had no significant effect on OR or SW sperm. Higher ouabain (1 mM), which inhibits both ouabain-sensitive and ouabain-resistant NKA, had little additional effect on sperm motility in all mouse lines, including the OR and SW. A similar pattern was found for the effect of ouabain on sperm intracellular sodium ([Na+]i). These results indicate that NKAα4, but not NKAα1 is the main contributor to sperm motility and that the ouabain affinity site in NKA is not an essential requirement for male fertility.

Keywords: Na,K-ATPase isoforms; Ouabain; Sperm capacitation; Sperm motility.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Fertility
  • Ions
  • Male
  • Mice
  • Ouabain / pharmacology
  • Sodium
  • Sodium-Potassium-Exchanging ATPase / genetics
  • Sperm Motility*

Substances

  • Ions
  • Ouabain
  • Sodium
  • Sodium-Potassium-Exchanging ATPase