Large-scale, robust mushroom-shaped nanochannel array membrane for ultrahigh osmotic energy conversion

Sci Adv. 2021 May 19;7(21):eabg2183. doi: 10.1126/sciadv.abg2183. Print 2021 May.

Abstract

The osmotic energy, a large-scale clean energy source, can be converted to electricity directly by ion-selective membranes. None of the previously reported membranes meets all the crucial demands of ultrahigh power density, excellent mechanical stability, and upscaled fabrication. Here, we demonstrate a large-scale, robust mushroom-shaped (with stem and cap) nanochannel array membrane with an ultrathin selective layer and ultrahigh pore density, generating the power density up to 22.4 W·m-2 at a 500-fold salinity gradient, which is the highest value among those of upscaled membranes. The stem parts are a negative-charged one-dimensional (1D) nanochannel array with a density of ~1011 cm-2, deriving from a block copolymer self-assembly; while the cap parts, as the selective layer, are formed by chemically grafted single-molecule-layer hyperbranched polyethyleneimine equivalent to tens of 1D nanochannels per stem. The membrane design strategy provides a promising approach for large-scale osmotic energy conversion.