Background: The 2020 consensus guidelines for vancomycin therapeutic monitoring recommend using Bayesian estimation targeting the ratio of the area under the curve over 24 hours to minimum inhibitory concentration as an optimal approach to individualize therapy in pediatric patients. To support institutional guideline implementation in children, the objective of this study was to comprehensively assess and compare published population-based pharmacokinetic (PK) vancomycin models and available Bayesian estimation tools, specific to neonatal and pediatric patients.
Methods: PubMed and Embase databases were searched from January 1994 to December 2020 for studies in which a vancomycin population PK model was developed to determine clearance and volume of distribution in neonatal and pediatric populations. Available Bayesian software programs were identified and assessed from published articles, software program websites, and direct communication with the software company. In the present review, 14 neonatal and 20 pediatric models were included. Six programs (Adult and Pediatric Kinetics, BestDose, DoseMeRx, InsightRx, MwPharm++, and PrecisePK) were evaluated.
Results: Among neonatal models, Frymoyer et al and Capparelli et al used the largest PK samples to generate their models, which were externally validated. Among the pediatric models, Le et al used the largest sample size, with multiple external validations. Of the Bayesian programs, DoseMeRx, InsightRx, and PrecisePK used clinically validated neonatal and pediatric models.
Conclusions: To optimize vancomycin use in neonatal and pediatric patients, clinicians should focus on selecting a model that best fits their patient population and use Bayesian estimation tools for therapeutic area under the -curve-targeted dosing and monitoring.
Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.