The objective of this study was to assess protein degradation and biological activities of the water-soluble extract (WSE) and the 10 kDa permeable and nonpermeable fractions of in vitro digesta of low-fat Akawi cheese made from blends (100:0, 85:15, or 70:30) of bovine milk and camel milk and ripened for 28 d. Biological activities, such as antioxidant activities, amylase and glucosidase inhibition, angiotensin-converting enzyme inhibition, and antiproliferative of the WSE, and the 10 kDa permeable and nonpermeable fraction of the digesta were assessed. To identify the nature of the bioaccessible compounds, untargeted metabolomic analysis was carried out by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Higher o-phthaldialdehyde absorbances were observed in cheeses made of bovine-camel milk blends compared with cheese from bovine milk only. The WSE from these blends also exhibited higher angiotensin-converting enzyme inhibitory effects and higher antiproliferative effects than from bovine milk. The results from this study suggest that the use of blends of camel milk and bovine milk can modulate biological activities of low-fat Akawi cheese.
Keywords: antidiabetic; antiproliferative; bioaccessibility; camel milk cheese.
Copyright © 2021 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.