Bias Reduction Methods for Propensity Scores Estimated from Error-Prone EHR-Derived Covariates

Health Serv Outcomes Res Methodol. 2021 Jun:21:169-187. doi: 10.1007/s10742-020-00219-3. Epub 2020 Sep 10.

Abstract

As the use of electronic health records (EHR) to estimate treatment effects has become widespread, concern about bias introduced by error in EHR-derived covariates has also grown. While methods exist to address measurement error in individual covariates, little prior research has investigated the implications of using propensity scores for confounder control when the propensity scores are constructed from a combination of accurate and error-prone covariates. We reviewed approaches to account for error in propensity scores and used simulation studies to compare their performance. These comparisons were conducted across a range of scenarios featuring variation in outcome type, validation sample size, main sample size, strength of confounding, and structure of the error in the mismeasured covariate. We then applied these approaches to a real-world EHR-based comparative effectiveness study of alternative treatments for metastatic bladder cancer. This head-to-head comparison of measurement error correction methods in the context of a propensity score-adjusted analysis demonstrated that multiple imputation for propensity scores performs best when the outcome is continuous and regression calibration-based methods perform best when the outcome is binary.