The overexpression of cytokine receptor-like factor-2 (CRLF2) identified by anti-thymic stromal lymphopoietin receptor/TSLPR flow cytometry (FCM) has been reported as a screening tool for the identification of BCR-ABL1-like B-cell acute lymphoblastic leukemia/B-ALL with CRLF2 re-arrangement. TSLPR expression was studied prospectively in consecutive 478 B-ALLs (≤ 12 years (n = 244); 13-25 years (n = 129); > 25 years (n = 105)) and correlated with various hematological parameters and end-of-induction measurable residual disease (day 29; MRD ≥ 0.01% by 10-color FCM). TSLPR positivity in ≥ 10% leukemic cells was detected in 14.6% (n = 70) of B-ALLs. CRLF2 re-arrangement was detected in eight cases (11.4%) including P2RY8-CRLF2 (n = 6), and IgH-CRLF2 (n = 2) with a median TSLPR positivity of 48.8% and 99% leukemic cells, respectively. Recurrent gene fusions/RGF (BCR-ABL1 (17.1%); ETV6-RUNX1 (4.2%), TCF3-PBX1 (1.4%)), other BCR-ABL1-like chimeric gene fusions/CGFs (PDGFRB-rearrangement (2.9%), IgH-EPOR (1.4%)), CRLF2 extra-copies/hyperdiploidy (17.1%), and IgH translocation without a known partner (10%) were also detected in TSLPR-positive patients. CD20 positivity (52.9% vs 38.5%; p = 0.02) as well as iAMP21 (4.3% vs 0.5%; p = 0.004) was significantly more frequent in TSLPR-positive cases. TSLPR-positive patients did not show a significantly higher MRD, compared to TSLPR-negative cases (37% vs 33%). Increasing the threshold cut-off (from ≥ 10 to > 50% or > 74%) increased the specificity to 88% and 100% respectively in identifying CRLF2 translocation. TSLPR expression is not exclusive for CRLF2 translocations and can be seen with various other RGFs, necessitating their testing before its application in diagnostic algorithms. In patients with high TSLPR positivity (> 50%), the testing may be restricted to CRLF2 aberrancies, while patients with 10-50% TSLPR positivity need to be tested for both CRLF2- and non-CRLF2 BCR-ABL1-like CGFs.
Keywords: BCR-ABL1-like ALL; CRLF2; Chimeric gene fusion; Fluorescence in situ hybridization; IgH translocation; Ph-like ALL; Thymic stromal lymphopoietin receptor; Tyrosine kinase inhibitors.
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.