Interactions between water and rhodium clusters: molecular adsorption versus cluster adsorption

Nanoscale. 2021 Jul 8;13(26):11396-11402. doi: 10.1039/d1nr02372a.

Abstract

Understanding metal-water interactions and hydrogen-bonding in water droplets is important but highly challenging. Various transition metals may serve as effective coordination centers to water; however, not in all cases is water bonded to a metal center as single molecules. We report here the observations of gas-phase rhodium clusters and their interactions with water. A series of rhodium-water clusters, Rhn±,0(H2O)m (n = 3-30, m = 1-5), with isotope labels were detected by mass spectrometry after exposure to different water concentrations, among which Rh8+(H2O)4 and Rh9+(H2O)3 were prominent in the mass distributions, showing a size-dependent preference of water adsorption on rhodium clusters. Comprehensive density functional theory calculations reveal that the lowest energy structure of Rh9+(H2O)3 possesses a hydrogen-bonded cyclic (H2O)3 water trimer on the top of a tri-capped Rh9+ trigonal prism. The tri-capped Rh9+ trigonal prism and the cyclic (H2O)3 water trimer match in sizes, charge distributions, and orbital symmetries to form effective electrostatic cluster-cluster interactions. In contrast, Rh8+(H2O)4 contains four water molecules separately attached to a bi-capped octahedron, Rh8+, at four corners via single-molecule adsorption. The difference between covalent molecular adsorption and electrostatic cluster-cluster interaction in these two proto-typical rhodium hydrates is further demonstrated by detailed natural bonding orbital, electrostatic surface potential, and charge decomposition analyses.