Purpose: To evaluate the effect of AMD3100 treatment to cholangiocarcinoma by analyzing the relationship between them, and provide experimental evidence for whether AMD3100 can become a clinical treatment drug for cholangiocarcinoma.
Materials and methods: Cholangiocarcinoma RBE cell lines were used in this study. MTT cell proliferation test was used for evaluating the effect of gemcitabine and AMD3100 to cell. CXCR4, N-cadherin, VEGF-C and MMP-9 were detect by RT-PCR and western. Transwell was used for evaluating the invasion effect.
Results: We demonstrated that as the concentration of gemcitabine increasing from 0.33, 3.33 to 33.33 uM, the cell survival rate was 76.65%, 71.40%, 52.25%, respectively. RT-PCR and Western blot that gemcitabine could affect the expression of CXCR4 protein and the level of mRNA transcription in a dose-dependent manner. N-cadherin VEGF-C, MMP-9 mRNA transcription level showed a significant upward trend in gemcitabine group. In Transwell test, the number of cells in the gemcitabine group was significantly higher than that in the no-medication group (p < .05), the AMD3100 group and the combination group of gemcitabine and AMD3100, the difference between the no-medication group and the AMD3100 monotherapy group was not significant, and the combination group was between them.
Conclusions: This study showed that gemcitabine significantly inhibited the growth of cholangiocarcinoma RBE cells in a dose-dependent manner, and gemcitabine can affect the expression of CXCR4, N-cadherin, VEGF-C, MMP-9 protein and mRNA. Cell invasion and metastasis-related factors decreased after AMD3100 combined with gemcitabine.
Keywords: AMD3100; CXCL12; CXCR4; Gemcitabine; cholangiocarcinoma.