Purpose: To evaluate the effect of thermocycling on the water contact angle (WCA), surface roughness (SR), and microhardness (MH) of different CAD-CAM PMMA denture base materials after different surface treatments (conventional laboratory polishing, polishing kit, or surface sealant).
Materials and methods: Disk-shaped specimens (10 × 2 mm) of 3 different CAD-CAM PMMAs, AvaDent (AV); Merz M-PM (M-PM); Polident (Poli), and a conventional heat-polymerized PMMA (Vynacron) (CV) (n=21) were divided into 3 different surface treatment groups (n=7): conventional laboratory polishing (CLP), polishing with acrylic resin polisher kit (PK), and a surface sealant (Palaseal) (SSC). Stereomicroscopic images were taken both before and after thermocycling. WCA, SR, and MH of all specimens were measured before and after thermocycling and compared by using a 2-way ANOVA (α=0.05).
Results: After thermocycling, WCA significantly increased for CLP- or PK -applied (P<.001) specimens of all materials and SSC-applied M-PM (P=.002), SR significantly increased for CLP-applied M-PM (P=.027) and PK-applied Poli (P=.041), and MH significantly decreased for CLP- or PK-applied AV (P = .001, P < .001, respectively), CV (P=.033, P=.023, respectively), and M-PM (P=.003, P=.001, respectively), SSC-applied M-PM (P<.001), and CLP-applied Poli (P<.001). Stereomicroscopic images revealed rougher surfaces for PK-applied specimens.
Conclusions: After thermocycling, surface treatment had a significant effect on water contact angle and surface roughness. CLP or PK application resulted in hydrophobic surfaces compared with before thermocycling. CLP or SSC application on CAD-CAM PMMAs resulted in smoother surfaces. Thermocycling lowered the microhardness of all PMMAs, and the decrease was significant in CLP- or PK-applied PMMAs, except for PK-applied Poli.
Keywords: CAD-CAM materials; Microhardness; PMMA dentures; Surface roughness; Thermocycling; Water contact angle.
Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.