Hyperosmotic stress-induced somatic embryogenesis and its continuous culture in Japanese honewort (Cryptotaenia japonica)

Plant Biotechnol (Tokyo). 2021 Mar 25;38(1):31-36. doi: 10.5511/plantbiotechnology.20.0910a.

Abstract

Japanese honewort (Cryptotaenia japonica) is consumed as a traditional vegetable and has medicinal applications. In Japan, C. japonica is mainly produced using hydroponic culture systems; however, damping-off is often caused by the adherence of pathogens to its seeds. Therefore, the use of sterile artificial seeds in hydroponic culture is likely to be effective for preventing disease. In this study, we established methods for stress-induced somatic embryogenesis and artificial seed production in Japanese honewort. Shoot apex explants from seedlings were treated with 0.7 M sucrose as a hyperosmotic stress for 3 or 6 weeks, and then transferred to stress-free conditions. Somatic embryos were formed after culture in stress-free conditions for 7 weeks. Stress-treated shoot apex explants that formed somatic embryos were cultured in Murashige and Skoog liquid medium with shaking. After 2 weeks of culture, approximately 800 somatic embryos were formed from each explant. Somatic embryos were formed continuously during 37 weeks under the same culture conditions. Thus, somatic embryogenesis was effectively induced in Japanese honewort via hyperosmotic stress, and embryogenic competence was maintained under stress- and phytohormone-free conditions. The somatic embryos produced by liquid culture were used to produce artificial seeds by enveloping the embryos in whipped alginate gel to avoid hypoxic conditions. The artificial seeds had a high germination rate (72%). This system is suitable for the sterile, highly productive hydroponic culture of Japanese honewort.

Keywords: Japanese honewort; artificial seed; hydroponic culture; hyperosmotic stress; somatic embryogenesis.