Quantitative proteomic analysis of marine biofilms formed by filamentous cyanobacterium

Environ Res. 2021 Oct:201:111566. doi: 10.1016/j.envres.2021.111566. Epub 2021 Jun 25.

Abstract

Cyanobacterial molecular biology can identify pathways that affect the adhesion and settlement of biofouling organisms and, consequently, obtain novel antifouling strategies for marine applications. Proteomic analyses can provide an essential understanding of how cyanobacteria adapt to different environmental settings. However, only a few qualitative studies have been performed in some cyanobacterial strains. Considering the limited knowledge about protein expression in cyanobacteria in different growing conditions, a quantitative proteomic analysis by LC-MS/MS of biofilm cells from a filamentous strain was performed. Biofilms were also analysed through standard methodologies for following cyanobacterial biofilm development. Biofilms were formed on glass and perspex at two relevant hydrodynamic conditions for marine environments (average shear rates of 4 s-1 and 40 s-1). Biofilm development was higher at 4 s-1 and no significant differences were found between surfaces. Proteomic analysis identified 546 proteins and 41 were differentially expressed. Differences in protein expression were more noticeable between biofilms formed on glass and perspex at 4 s-1. When comparing biofilms formed on different surfaces, results suggest that biofilm development may be related to the expression of several proteins like a beta-propeller domain-containing protein, chaperone DnaK, SLH domain-containing proteins, an OMF family outer membrane protein, and/or additional uncharacterized proteins. Regarding the hydrodynamic effect, biofilm development can be related to SOD enzyme expression, to proteins related to photosynthetic processes and to a set of uncharacterized proteins with calcium binding domains, disordered proteins, and others involved in electron transfer activity. Studies that combine distinct approaches are essential for finding new targets for antibiofilm agents. The characterisation performed in this work provides new insights into how shear rate and surface affect cyanobacterial biofilm development and how cyanobacteria adapt to these different environmental settings from a macroscopic standpoint to a proteomics context.

Keywords: Cyanobacterial biofilms; Fouling surfaces; Hydrodynamics; LC-MS/MS; Marine biofouling; Shotgun proteomic.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biofilms
  • Chromatography, Liquid
  • Cyanobacteria*
  • Proteomics*
  • Tandem Mass Spectrometry