Most obese and insulin-resistant individuals do not develop diabetes. This is the result of the capacity of β-cells to adapt and produce enough insulin to cover the needs of the organism. The underlying mechanism of β-cell adaptation in obesity, however, remains unclear. Previous studies have suggested a role for STAT3 in mediating β-cell development and human glucose homeostasis, but little is known about STAT3 in β-cells in obesity. We observed enhanced cytoplasmic expression of STAT3 in severely obese subjects with diabetes. To address the functional role of STAT3 in adult β-cells, we generated mice with tamoxifen-inducible partial or full deletion of STAT3 in β-cells and fed them a high-fat diet before analysis. Interestingly, β-cell heterozygous and homozygous STAT3-deficient mice showed glucose intolerance when fed a high-fat diet. Gene expression analysis with RNA sequencing showed that reduced expression of mitochondrial genes in STAT3 knocked down human EndoC-β1H cells, confirmed in FACS-purified β-cells from obese STAT3-deficient mice. Moreover, silencing of STAT3 impaired mitochondria activity in EndoC-β1H cells and human islets, suggesting a mechanism for STAT3-modulated β-cell function. Our study postulates STAT3 as a novel regulator of β-cell function in obesity.
© 2021 by the American Diabetes Association.