The rapidly acting antidepressants ketamine and scopolamine exert behavioral effects that can last from several days to more than a week in some patients. The molecular mechanisms underlying the maintenance of these antidepressant effects are unknown. Here we show that methyl-CpG-binding protein 2 (MeCP2) phosphorylation at Ser421 (pMeCP2) is essential for the sustained, but not the rapid, antidepressant effects of ketamine and scopolamine in mice. Our results reveal that pMeCP2 is downstream of BDNF, a critical factor in ketamine and scopolamine antidepressant action. In addition, we show that pMeCP2 is required for the long-term regulation of synaptic strength after ketamine or scopolamine administration. These results demonstrate that pMeCP2 and associated synaptic plasticity are essential determinants of sustained antidepressant effects.
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.