Gibbons of the genus Hylobates, which inhabit Southeast Asia, show great diversity and comprise seven to nine species. Natural hybridisation has been observed in several species contact zones, but the history and extent of hybridisation and introgression in possibly historical and the current contact zones remain unclear. To uncover Hylobates species phylogeny and the extent of introgression in their evolution, genotyping by random amplicon sequencing-direct (GRAS-Di) was applied to 47 gibbons, representing seven Hylobates species/subspecies and two outgroup gibbon species. Over 200,000 autosomal single-nucleotide variant sites were identified. The autosomal phylogeny supported that divergence from the mainland species began ~3.5 million years ago, and subsequently occurred among the Sundaic island species. Significant introgression signals were detected between H. lar and H. pileatus, H. lar and H. agilis and H. albibarbis and H. muelleri, which all are parapatric and form ongoing hybrid zones. Furthermore, the introgression signals were detected in every analysed individual of these species, indicating a relatively long history of hybridisation, which might have affected the entire gene pool. By contrast, signals of introgression were either not detected or doubtful in other species pairs living on different islands, indicating the rarity of hybridisation and introgression, even though the Sundaic islands were connected during the Pliocene and Pleistocene glacial events.
© 2021. The Author(s), under exclusive licence to The Genetics Society.