Purpose: To evaluate an algorithm for calibrationless parallel imaging to reconstruct undersampled parallel transmit field maps for the body and brain.
Methods: Using a combination of synthetic data and in vivo measurements from brain and body, 3 different approaches to a joint transmit and receive low-rank tensor completion algorithm are evaluated. These methods included: 1) virtual coils using the product of receive and transmit sensitivities, 2) joint-receiver coils that enforces a low rank structure across receive coils of all transmit modes, and 3) transmit low rank that uses a low rank structure for both receive and transmit modes simultaneously. The performance of each is investigated for different noise levels and different acceleration rates on an 8-channel parallel transmit 7 Tesla system.
Results: The virtual coils method broke down with increasing noise levels or acceleration rates greater than 2, producing normalized RMS error greater than 0.1. The joint receiver coils method worked well up to acceleration factors of 4, beyond which the normalized RMS error exceeded 0.1. Transmit low rank enabled an eightfold acceleration, with most normalized RMS errors remaining below 0.1.
Conclusion: This work demonstrates that undersampling factors of up to eightfold are feasible for transmit array mapping and can be reconstructed using calibrationless parallel imaging methods.
Keywords: autocalibration; calibration-free; calibrationless; cardiac MRI; low rank; parallel transmit; self-calibration; tensor completion; transmit mapping; ultrahigh field.
© 2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.