Nanoplastics (NPs) cause various adverse effects on marine fish. However, effects of dietary NPs exposure on liver lipid metabolism and muscle nutritional quality of carnivorous marine fish are not fully understood. In this study, a 21-day feeding test was conducted to simulate the food chain transfer of polystyrene nanoplastics (PS NPs) and then evaluate effects of different dietary PS NPs levels on the survival, growth performance, liver lipid metabolism, and muscle nutritional quality of large yellow croaker Larimichthys crocea. Results indicated that the survival and growth of large yellow croaker decreased with the increase of PS NPs levels. Moreover, PS NPs induced excessive liver lipid accumulation by down-regulating the expression of lipolysis-related genes and inhibiting the AMPK-PPARα signaling pathway. In vitro, PS NPs could be accumulated in hepatocytes, reduce cell viability, and disrupt lipid metabolism of hepatocytes. Also, we found for the first time that PS NPs altered fatty acid composition and texture of fish muscle by enhancing oxidative stress and disrupting lipid metabolism. Overall, this study indicated that PS NPs induced liver lipid deposition by inhibiting lipolysis, and demonstrated that PS NPs altered the nutritional quality of fish, which might cause potential health effects for human consumers.
Keywords: Dietary exposure; Fatty acid composition; Flesh texture; Lipid accumulation; Nanoplastics (NPs).
Copyright © 2021. Published by Elsevier B.V.