Impact of Cold Storage on Bioactive Compounds and Their Stability of 36 Organically Grown Beetroot Genotypes

Foods. 2021 Jun 4;10(6):1281. doi: 10.3390/foods10061281.

Abstract

In order to exploit the functional properties of fresh beetroot all year round, maintaining the health-benefiting compounds is the key factor. Thirty-six beetroot genotypes were evaluated regarding their content of total dry matter, total phenolic compounds, betalain, nitrate, and total soluble sugars directly after harvest and after cold storage periods of one and four months. Samples were collected from two field experiments, which were conducted under organic conditions in Southwestern Germany in 2017 and 2018. The outcome of this study revealed a significant influence of genotype (p < 0.05) on all measured compounds. Furthermore, significant impacts were shown for storage period on total dry matter content, nitrate, and total phenolic compounds. The medians of nitrate content based on the genotypes studied within the experiment ranged between 4179 ± 1267-20,489 ± 2988 mg kg-1 DW (dry weight), and that for the total phenolic compounds varied between 201.45 ± 13.13 mg GAE 100 g-1 DW and 612.39 ± 40.58 mg GAE 100 g-1 DW (milligrams of gallic acid equivalents per 100 g of dry weight). According to the significant influence of the interactions of storage period and genotype on total soluble sugars and betalain, the decrease or increase in the content of the assessed compounds during the cold storage noted to be genotype-specific. Therefore, to benefit beetroots with retained quality for an extended time after harvest, selection of the suitable genotype based on the intended final use is recommended.

Keywords: beetroot; betalain; bioactive compounds; nitrate; organic farming; phenolic compounds; storage; sugar; total dry matter.