Purpose: To evaluate geometric variations of patients receiving stereotactic body radiotherapy (SBRT) after radical prostatectomy and the dosimetric benefits of stereotactic MRI guided adaptive radiotherapy (SMART) to compensate for these variations.
Materials/methods: The CTV and OAR were contoured on 55 MRI setup scans of 11 patients treated with an MR-LINAC and enrolled in a phase II trial of post-prostatectomy SBRT. All patients followed institutional bladder and rectum preparation protocols and received five fractions of 6-6.8 Gy to the prostate bed. Interfractional changes in volume were calculated and shape deformation was quantified by the Dice similar coefficient (DSC). Changes in CTV-V95%, bladder and rectum maximum dose, V32.5Gy and V27.5Gy were predicted by recalculating the initial plan on daily MRI. SMART was retrospectively simulated if the predicted dose exceeded pre-set criteria.
Results: The CTV volume and shape remained stable with a median volumetric change of 3.0% (IQR -3.0% to 11.5%) and DSC of 0.83 (IQR 0.79 to 0.88). Relatively large volumetric changes in bladder (median -24.5%, IQR -34.6% to 14.5%) and rectum (median 5.4%, IQR - 9.7% to 20.7%) were observed while shape changes were moderate (median DSC of 0.79 and 0.73, respectively). The median CTV-V95% was 98.4% (IQR 94.9% to 99.6%) for the predicted doses. However, SMART would have been deemed beneficial for 78.2% of the 55 fractions based on target undercoverage (16.4%), exceeding OAR constraints (50.9%), or both (10.9%). Simulated SMART improved the dosimetry and met dosimetric criteria in all fractions. Moderate correlations were observed between the CTV-V95% and target DSC (R2 = 0.73) and bladder mean dose versus volumetric changes (R2 = 0.61).
Conclusions: Interfractional dosimetric variations resulting from anatomic deformation are commonly encountered with post-prostatectomy RT and can be mitigated with SMART.
Keywords: MR guided adaptive radiotherapy; MRgRT; post-prostatectomy; prostate cancer; stereotactic body radiotherapy SBRT.