As variable after effects have been observed following phasic muscle contraction prior to continuous theta-burst stimulation (cTBS), we here investigated two cTBS protocols (cTBS300 and cTBS600) in 20 healthy participants employing a pre-relaxed muscle condition including visual feedback on idle peripheral surface EMG activity. Furthermore, we assessed corticospinal excitability measures also from a pre-relaxed state to better understand the potential impact of these proposed contributors to TBS. Motor-evoked potential (MEP) magnitude changes were assessed for 30 min. The linear model computed across both experimental paradigms (cTBS300 and cTBS600) revealed a main effect of TIME COURSE (p = 0.044). Separate exploratory analysis for cTBS300 revealed a main effect of TIME COURSE (p = 0.031), which did not maintain significance after Greenhouse-Geisser correction (p = 0.073). For cTBS600, no main effects were observed. An exploratory analysis revealed a correlation between relative SICF at 2.0 ms (p = 0.006) and after effects (relative mean change) of cTBS600, which did not survive correction for multiple testing. Our findings thereby do not support the hypothesis of a specific excitability modulating effect of cTBS applied to the human motor-cortex in setups with pre-relaxed muscle conditions.
Keywords: cTBS 300 versus cTBS 600; continuous theta burst stimulation (cTBS); healthy participants; non-invasive brain stimulation; pre-relaxed muscle condition.