Gaseous nitrogen (N) emission [nitric oxide (NO), nitrous oxide (N2O), and nitrogen (N2)] is an important pathway of soil N loss. Nitrification and denitrification are the main processes of gaseous N production in soil. However, the contribution of heterotrophic nitrification, co-denitrification, and anammox to gaseous N production remains uncertain. In a laboratory soil incubation experiment, we used the 15N labelling and pairing technique, combining the nitrification inhibitor dicyandiamide (DCD), to quantify the contribution of different microbial processes to soil NO, N2O and N2 production under anaerobic conditions. The results showed that after 24 h anaerobic incubation, the highest total 15N recovery of three gases occurred at 65% water filled pore space (WFPS), accounting for 20.0% of total added 15N. Denitrification contributed 49.9%-94.1%, 29.0%-84.7%, and 58.2%-85.8% to the production of NO, N2O and N2 respectively, suggesting that denitrification was the predominant process of those three N gases emission. Heterotrophic nitrification was an important pathway of NO and N2O production, particularly at conditions with low soil water content (10% WFPS), with its contribution to those two N gases production being 50.1% and 42.8%, respectively. Co-denitrification contributed 10.6%-30.7% of N2O production. For N2 production, the total contribution of co-denitrification and anammox was 14.2%-41.8%. The role of co-denitrification can not be ignored for N2O and N2 production. Our results demonstrated that the 15N labelling and pairing technique is a promising tool to quantify the contribution of different microbial processes to gaseous N loss.
气态氮[一氧化氮(NO)、氧化亚氮(N2O)和氮气(N2)]的释放是土壤氮损失的一种重要途径。硝化和反硝化作用是土壤气态氮损失的主要微生物过程,但是异养硝化作用、共反硝化作用和厌氧氨氧化过程对土壤气态氮损失的贡献尚不清楚。本研究利用15N标记和配对法,结合硝化抑制剂双氰胺(DCD),通过土壤培养试验来量化厌氧条件下各种微生物过程对NO、N2O和N2产生的贡献。结果表明: 在厌氧条件下培养24 h后,土壤孔隙含水率为65%时,3种气体总的15N回收率最高,占加入15N总量的20.0%。反硝化过程对NO、N2O和N2产生的贡献率分别为49.9%~94.1%、29.0%~84.7%和58.2%~85.8%,是产生3种气体的主要过程。异养硝化过程也是产生NO和N2O的重要过程,特别是在土壤孔隙含水率很低时(10%)对两种气体产生的贡献率分别为50.1%和42.8%。,共反硝化过程对N2O产生的贡献率为10.6%~30.7%,共反硝化和厌氧氨氧化过程对N2产生的总贡献率为14.2%~41.8%,表明共反硝化过程在N2O和N2产生中的作用不可忽视。15N标记和配对法是区分气态氮损失的各种微生物过程的有效手段。.
Keywords: 15N labelling; 15N pairing technique; N2; N2O; NO; co-denitrification; denitrification; heterotrophic nitrification; soil moisture.