GDP Induces PANC-1 Human Pancreatic Cancer Cell Death Preferentially under Nutrient Starvation by Inhibiting PI3K/Akt/mTOR/Autophagy Signaling Pathway

Chem Biodivers. 2021 Sep;18(9):e2100389. doi: 10.1002/cbdv.202100389. Epub 2021 Jul 20.

Abstract

Pancreatic tumors are hypovascular, which leads to a poor nutrient supply to support the aggressively proliferating tumor cells. However, human pancreatic cancer cells have extreme resistance to nutrition starvation, which enables them to survive under severe metabolic stress conditions within the tumor microenvironment, a phenomenon known as "austerity" in cancer biology. Discovering agents which can preferentially inhibit the cancer cells' ability to tolerate starvation conditions represents a new generation of anticancer agents. In this study, geranyl 2,4-dihydroxy-6-phenethylbenzoate (GDP), isolated from Boesenbergia pandurata rhizomes, exhibited potent preferential cytotoxicity against PANC-1 human pancreatic cancer cells under nutrition starvation conditions. GDP also possessed PANC-1 cell migration and colony formation inhibitory activities under normal nutrient-rich conditions. Mechanistically, GDP inhibited PI3K/Akt/mTOR/autophagy survival signaling pathway, leading to selective PANC-1 cancer cell death under the nutrition starvation condition. Therefore, GDP is a promising anti-austerity agent for drug development against pancreatic cancer.

Keywords: Boesenbergia pandurata; PANC-1; austerity; pancreatic cancer; preferential cytotoxicity.

MeSH terms

  • Antineoplastic Agents, Phytogenic / chemistry
  • Antineoplastic Agents, Phytogenic / isolation & purification
  • Antineoplastic Agents, Phytogenic / pharmacology*
  • Autophagy / drug effects*
  • Cell Death / drug effects
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Drug Screening Assays, Antitumor
  • Humans
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Proto-Oncogene Proteins c-akt / antagonists & inhibitors*
  • Proto-Oncogene Proteins c-akt / metabolism
  • Signal Transduction / drug effects
  • TOR Serine-Threonine Kinases / antagonists & inhibitors*
  • TOR Serine-Threonine Kinases / metabolism

Substances

  • Antineoplastic Agents, Phytogenic
  • MTOR protein, human
  • Proto-Oncogene Proteins c-akt
  • TOR Serine-Threonine Kinases