Background: The lack of available vaccines and the emerging resistance to antimalarial drugs have provided the necessity to find noble antimalarial plant-based medicines. The leaf latex Aloe weloensis has been used in folk medicine against malarial and other human ailments in Ethiopia. Hence, the present study aimed to investigate the antimalarial activity of the leaf latex of A. weloensis against Plasmodium parasites.
Materials and methods: The prophylactic and curative models were employed to determine the in vivo antimalarial activity of the leaf latex A. weloensis against P. berghei infected mice, and the antioxidant activity of the latex was assessed using diphenyl-1-picrylhydrazine (DPPH) assay. Female mice were recruited for toxicity study, and the leaf latex was administered to fasted mice at a dose of 5000 mg/kg. The mice were kept under continuous observation for fourteen days for any signs of overt toxicity.
Results: The leaf latex of A. weloensis was safe up to 5000 mg/kg, and the latex endowed free radical inhibition activity (IC50 = 10.25 μg/ml). The latex of A. weloensis leaf demonstrated the inhibitory activity against the 3D7 strain of P. falciparum (IC50 = 9.14 μg/ml). The prophylactic and curative effect of the latex was found to be dose-dependent. The mice's parasitemia level was significantly (p < 0.001) reduced at all tested doses of the leaf latex compared to negative control in the curative test. Parasitemia reduction was significant (200 mg/kg, p < 0.01, and 400 and 600 mg/kg, p < 0.001) in the prophylactic test compared to the control. In addition, the leaf latex significantly (p < 0.01) improved mean survival time, packed cell volume, rectal temperature, and bodyweight of P. berghei infected mice.
Conclusion: The leaf latex of Aloe weloensis was endowed with the antimalarial activity at various doses, corroborating the plant's claimed traditional use.
Copyright © 2021 Gedefaw Getnet Amare et al.