Background: Limited data exists on the long-term effects of aneurysmal subarachnoid hemorrhage (SAH) on spatial memory. Herein, we used a computerized virtual water maze to evaluate the feasibility of spatial memory testing in pilot cohort of ten patients who survived previous SAH.
Methods: Ten SAH survivors (5.8 ± 5.1 years after initial hemorrhage) and 7 age-matched controls underwent testing in a virtual water maze computer program. Additional subgroup analyses were performed to evaluate spatial reference memory correlation for ventricular size on admission, placement of an external ventricular drain and placement of a shunt.
Results: With respect to the spatial memory acquisition phase, there was no significant difference of pathway length traveled to reach the platform between SAH survivors and control subjects. During the probe trial, control subjects spent significantly longer time in target quadrants compared to SAH survivors (F(3, 24) = 10.32, p = 0.0001; Target vs. Right: Mean percent difference 0.16 [0-0.32], p = 0.045; Target vs. Across: Mean percent difference 0.35 [0.19-0.51], p < 0.0001; Target vs. Left: Mean percent difference 0.21 [0.05-0.37], p = 0.0094). Furthermore, patients who initially presented with smaller ventricles performed worse that those patients who had ventriculomegaly and/or required surgical management of hydrocephalus.
Conclusions: Our data demonstrate that SAH survivors have persistent spatial reference memory deficits years after the hemorrhage. Hydrocephalus at presentation and external ventricular drainage were not found to be associated with poor spatial memory outcomes in this pilot cohort. Therefore, other causes such as global cerebral edema or magnitude of initial ICP spike, need to be considered to be examined as root cause as well in subsequent studies. The protocol described in this manuscript is able to demonstrate a spatial reference memory deficit and can be used to study risk factors for spatial memory impairment on a larger scale.
Keywords: Aneurysm; Spatial memory; Subarachnoid hemorrhage; Virtual water maze.
Copyright © 2021 Elsevier B.V. All rights reserved.