Antibody drug conjugates (ADCs) represent a rapidly growing modality for the treatment of numerous oncology indications. The complexity of analytical characterization method development is increased due to the potential for synthetic intermediates and process-related impurities. In addition, the cytotoxicity of such materials provides an additional challenge with regard to handling products and/or sharing materials with analytical collaborators and/or vendors for technology development. Herein, we have utilized a site-specific chemoenzymatic glycoconjugation strategy for preparing ADC mimetics composed of the NIST monoclonal antibody (NISTmAb) conjugated to non-cytotoxic payloads representing both small molecules and peptides. The materials were exhaustively characterized with high-resolution mass spectrometry-based approaches to demonstrate the utility of each analytical method for confirming the conjugation fidelity as well as deep characterization of low-abundance synthetic intermediates and impurities arising from payload raw material heterogeneity. These materials therefore represent a widely available test metric to develop novel ADC analytical methods as well as a platform to discuss best practices for extensive characterization.
Keywords: Antibody drug conjugate; Biopharmaceutical; Biotherapeutic; Monoclonal antibody; NISTmAb; System suitability.
© 2021. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.