Background: Given the central role of skeletal muscles in glucose homeostasis, deposition of adipose depots beneath the fascia of muscles (versus subcutaneous adipose tissue [SAT]) may precede insulin resistance and type 2 diabetes (T2D) incidence. This study was aimed to investigate the associations between computed tomography (CT)-derived biomarkers for adipose tissue and T2D incidence in normoglycemic adults.
Methods and findings: This study was a population-based multiethnic retrospective cohort of 1,744 participants in the Multi-Ethnic Study of Atherosclerosis (MESA) with normoglycemia (baseline fasting plasma glucose [FPG] less than 100 mg/dL) from 6 United States of America communities. Participants were followed from April 2010 and January 2012 to December 2017, for a median of 7 years. The intermuscular adipose tissue (IMAT) and SAT areas were measured in baseline chest CT exams and were corrected by height squared (SAT and IMAT indices) using a predefined measurement protocol. T2D incidence, as the main outcome, was based on follow-up FPG, review of hospital records, or self-reported physician diagnoses. Participants' mean age was 69 ± 9 years at baseline, and 977 (56.0%) were women. Over a median of 7 years, 103 (5.9%) participants were diagnosed with T2D, and 147 (8.4%) participants died. The IMAT index (hazard ratio [HR]: 1.27 [95% confidence interval [CI]: 1.15-1.41] per 1-standard deviation [SD] increment) and the SAT index (HR: 1.43 [95% CI: 1.16-1.77] per 1-SD increment) at baseline were associated with T2D incidence over the follow-up. The associations of the IMAT and SAT indices with T2D incidence were attenuated after adjustment for body mass index (BMI) and waist circumference, with HRs of 1.23 (95% CI: 1.09-1.38) and 1.29 (95% CI: 0.96-1.74) per 1-SD increment, respectively. The limitations of this study include unmeasured residual confounders and one-time measurement of adipose tissue biomarkers.
Conclusions: In this study, we observed an association between IMAT at baseline and T2D incidence over the follow-up. This study suggests the potential role of intermuscular adipose depots in the pathophysiology of T2D.
Trial registration: ClinicalTrials.gov NCT00005487.