Deregulation of miRNAs contributes to the development of distinct cancer types, including melanoma, an aggressive form of skin cancer characterized by high metastatic potential and poor prognosis. The expression of a set of 580 miRNAs was investigated in a model of murine melanoma progression, comprising non-metastatic (4C11-) and metastatic melanoma (4C11+) cells. A significant increase in miR-138-5p expression was found in the metastatic 4C11+ melanoma cells compared to 4C11-, which prompted us to investigate its role in melanoma aggressiveness. Functional assays, including anoikis resistance, colony formation, collective migration, serum-deprived growth capacity, as well as in vivo tumor growth and experimental metastasis were performed in 4C11- cells stably overexpressing miR-138-5p. miR-138-5p induced an aggressive phenotype in mouse melanoma cell lines leading to increased proliferation, migration and cell viability under stress conditions. Moreover, by overexpressing miR-138-5p, low-growing and non-metastatic 4C11- cells became highly proliferative and metastatic in vivo, similar to the metastatic 4C11+ cells. Luciferase reporter analysis identified the tumor suppressor Trp53 as a direct target of miR-138-5p. Using data sets from independent melanoma cohorts, miR-138-5p and P53 expression were also found deregulated in human melanoma samples, with their levels negatively and positively correlated with prognosis, respectively. Our data shows that the overexpression of miR-138-5p contributes to melanoma metastasis through the direct suppression of Trp53.
Keywords: Aggressiveness; Melanoma; Metastasis; Trp53; miR-138-5p.
Copyright © 2021. Published by Elsevier Inc.