Solvent-Dependent Reactivity and Photochemistry of Dinuclear and Mononuclear Platinum(IV) Azido Triazaolato Complexes

Eur J Inorg Chem. 2021 Apr 15;2021(14):1397-1404. doi: 10.1002/ejic.202100041. Epub 2021 Mar 16.

Abstract

Reaction between the platinum(IV) azido complex trans,trans,trans-[Pt(py)2(N3)2(OH)2] (1) and 1,4-diphenyl-2-butyne-1,4-dione 2 in MeCN produces the intermediate peroxide-bridged dimeric platinum(IV) azido triazolato species (5), which has been characterised by X-ray crystallography. However, if the reaction between 1 and 2 is conducted in MeOH it results in decomposition. Over time in MeCN, dimer (5) converts into mononuclear complexes trans,trans,trans-[Pt(py)2(N3)(triazole)(OH)2] (3 a/3 b), which are in dynamic exchange. If resuspended in protic solvents (MeOH,H2O), 3 a/3 b undergo a slow (22 d) irreversible rearrangement to a cyclised platinum(IV) species 4 which contains a formally N,O-chelated ligand. Conversion of 3 a/3 b to 4 in d 4-MeOH can be accelerated (384x) by irradiation with visible light, although continued irradiation also produces N3 . and OH. radicals, and the [4-N3]+ species can be readily detected by ESI-MS. Solvent choice significantly effects both the cycloaddition reaction between 1 and 2, and the stability of the resultant complexes.

Keywords: Azides; Photoactivity; Platinum; Radicals; Structure elucidation.