TrkC-T1, the Non-Catalytic Isoform of TrkC, Governs Neocortical Progenitor Fate Specification by Inhibition of MAP Kinase Signaling

Cereb Cortex. 2021 Oct 22;31(12):5470-5486. doi: 10.1093/cercor/bhab172.

Abstract

Neocortical projection neurons are generated by neural progenitor cells (NPCs) within the ventricular and subventricular zone. While early NPCs can give rise to both deep and upper layer neurons, late progenitors are restricted to upper layer neurogenesis. The molecular mechanisms controlling the differentiation potential of early versus late NPCs are unknown. Here, we report a novel function for TrkC-T1, the non-catalytic isoform of the neurotrophin receptor TrkC, that is distinct from TrkC-TK+, the full-length isoform. We provide direct evidence that TrkC-T1 regulates the switch in NPC fate from deep to upper layer neuron production. Elevated levels of TrkC-T1 in early NPCs promote the generation of deep layer neurons. Conversely, downregulation of TrkC-T1 in these cells promotes upper layer neuron fate. Furthermore, we show that TrkC-T1 exerts this control by interaction with the signaling adaptor protein ShcA. TrkC-T1 prevents the phosphorylation of Shc and the downstream activation of the MAP kinase (Erk1/2) pathway. In vivo manipulation of the activity of ShcA or Erk1/2, directly affects cortical neuron cell fate. We thus show that the generation of upper layer neurons by late progenitors is dependent on the downregulation of TrkC-T1 in late progenitor cells and the resulting activation of the ShcA/Erk1/2 pathway.

Keywords: deep layers; fate specification; neocortex; neurotrophin; transcript variant.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Neocortex* / metabolism
  • Neural Stem Cells* / metabolism
  • Protein Isoforms / metabolism
  • Receptor, trkC
  • Signal Transduction / physiology

Substances

  • Protein Isoforms
  • Receptor, trkC