Context: Studies in rodents and humans suggest that high-fructose corn syrup (HFCS)-sweetened diets promote greater metabolic dysfunction than sucrose-sweetened diets.
Objective: To compare the effects of consuming sucrose-sweetened beverage (SB), HFCS-SB, or a control beverage sweetened with aspartame on metabolic outcomes in humans.
Methods: A parallel, double-blinded, NIH-funded study. Experimental procedures were conducted during 3.5 days of inpatient residence with controlled feeding at a research clinic before (baseline) and after a 12-day outpatient intervention period. Seventy-five adults (18-40 years) were assigned to beverage groups matched for sex, body mass index (18-35 kg/m2), and fasting triglyceride, lipoprotein and insulin concentrations. The intervention was 3 servings/day of sucrose- or HFCS-SB providing 25% of energy requirement or aspartame-SB, consumed for 16 days. Main outcome measures were %hepatic lipid, Matsuda insulin sensitivity index (ISI), and Predicted M ISI.
Results: Sucrose-SB increased %hepatic lipid (absolute change: 0.6 ± 0.2%) compared with aspartame-SB (-0.2 ± 0.2%, P < 0.05) and compared with baseline (P < 0.001). HFCS-SB increased %hepatic lipid compared with baseline (0.4 ± 0.2%, P < 0.05). Compared with aspartame-SB, Matsuda ISI decreased after consumption of HFCS- (P < 0.01) and sucrose-SB (P < 0.01), and Predicted M ISI decreased after consumption of HFCS-SB (P < 0.05). Sucrose- and HFCS-SB increased plasma concentrations of lipids, lipoproteins, and uric acid compared with aspartame-SB. No outcomes were differentially affected by sucrose- compared with HFCS-SB. Beverage group effects remained significant when analyses were adjusted for changes in body weight.
Conclusion: Consumption of both sucrose- and HFCS-SB induced detrimental changes in hepatic lipid, insulin sensitivity, and circulating lipids, lipoproteins and uric acid in 2 weeks.
Trial registration: ClinicalTrials.gov NCT01103921.
Keywords: Sugar-sweetened beverages; high-fructose corn syrup; insulin sensitivity; lipids; liver fat; sucrose.
© The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society.