Exposure to polycyclic aromatic hydrocarbons, DNA methylation and heart rate variability among non-current smokers

Environ Pollut. 2021 Nov 1:288:117777. doi: 10.1016/j.envpol.2021.117777. Epub 2021 Jul 10.

Abstract

Polycyclic aromatic hydrocarbons (PAHs) exposure is associated with heart rate variability (HRV) reduction, a widely used marker of cardiovascular autonomic dysfunction. The role of DNA methylation in the relationship between PAHs exposure and decreased HRV is largely unknown. This study aims to explore epigenome-wide DNA methylation changes associated with PAHs exposure and further evaluate their associations with HRV alternations among non-current smokers. We measured 10 mono-hydroxylated PAHs (OH-PAHs) in urine and DNA methylation levels in blood leukocytes among participants from three panels of Chinese non-current smokers (152 in WHZH, 99 in SY, and 53 in COW). We conducted linear regression analyses between DNA methylation and OH-PAHs metabolites with adjustment for age, gender, body mass index, drinking, blood cell counts, and surrogate variables in each panel separately, and combined the results by using inverse-variance weighted fixed-effect meta-analysis to obtain estimates of effect size. The median value of total OH-PAHs ranged from 0.92 × 10-2 in SY panel (62.6% men) to 13.82 × 10-2 μmol/mmol creatinine in COW panel (43.4% men). The results showed that methylation levels of cg18223625 (COL20A1) and cg07805771 (SLC16A1) were significantly or marginally significantly associated with urinary 2-hydroxynaphthalene [β(SE) = 0.431(0.074) and 0.354(0.068), FDR = 0.016 and 0.056, respectively], while methylation level of cg09235308 (PLEC1) was positively associated with urinary total OH-PAHs [β(SE) = 0.478(0.079), FDR = 0.004]. Hypermethylations of cg18223625, cg07805771, and cg09235308 were inversely associated with HRV indices among the WHZH and COW non-current smokers. However, we did not observe significant epigenome-wide associations for the other 9 urinary OH-PAHs. These findings provide new evidence that PAHs exposure is linked to differential DNA methylation, which may help better understand the influences of PAHs exposure on HRV alternations.

Keywords: DNA methylation; Epigenome-wide association; Heart rate variability; Polycyclic aromatic hydrocarbons.

Publication types

  • Meta-Analysis

MeSH terms

  • Biomarkers
  • DNA Methylation
  • Female
  • Heart Rate
  • Humans
  • Male
  • Polycyclic Aromatic Hydrocarbons*
  • Smokers

Substances

  • Biomarkers
  • Polycyclic Aromatic Hydrocarbons