Chiral Phosphine-Copper Iodide Hybrid Cluster Assemblies for Circularly Polarized Luminescence

J Am Chem Soc. 2021 Jul 28;143(29):10860-10864. doi: 10.1021/jacs.1c05476. Epub 2021 Jul 19.

Abstract

Chiral chromophores and their ordered assemblies are intriguing for yielding circularly polarized luminescence (CPL) and exploring intrinsic structure-light emission relationships. With the extensively studied chiral organic molecules and inorganic nanoparticle assemblies for the amplified CPL, the assemblies of copper halide hybrid clusters have attracted intensive attention due to their potential efficient CPL. Here, we report robust chiral phosphine-copper iodide hybrid clusters and their layered assemblies in crystalline states for amplified CPL. We reveal that the intermolecular interactions endow the clusters with the capability of assembling into chiral crystalline CPL materials, including hexagonal platelet-shaped microcrystals (glum ≈ 9.5 × 10-3) and highly oriented crystalline films (glum ≈ 5 × 10-3). Owing to the high crystalline feature of the thin film, we demonstrate an electroluminescent device with bright electroluminescence (1200 cd m-2).