A series of analogs of vegfrecine, a natural quinone vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor, was synthesized via oxidative amination of 2,5-dihydroxybenzamide with functionalized arylamine followed by ammonolysis and substitution of the quinone ring. The inhibitory activities of the analogs against the VEGFR-1 and -2 tyrosine kinases were assayed in vitro with the aim to identify a compound suitable to treat cancer and inflammatory diseases. Alterations of the functionality of the phenyl group, substitution of the quinone ring, and oxidative cyclization of the 1-carboxamide-2-aminoquinone moiety to form an isoxazole quinone ring were examined. Introduction of halo- and alkyl-substituents at the 5'-position of the phenyl ring resulted in potent inhibition of the VEGFR-1 and -2 tyrosine kinases. In particular, structural modification at C-5' on the phenyl ring was shown to significantly affect the selectivity of the inhibition between the VEGFR-1 and -2 tyrosine kinases. Compound 8, 5'-methyl-vegfrecine, showed superior selectivity toward the VEGFR-2 tyrosine kinase over the VEGFR-1 tyrosine kinase.
© 2021. The Author(s), under exclusive licence to the Japan Antibiotics Research Association.