The digestive physiology of house dust mites (HDM) is of interest to understand their allergenicity towards humans since many of their allergens are digestive enzymes and/or are excreted into airborne fecal pellets. The aim of this study is to provide insight on the biochemical basis of proteolytic digestion in Dermatophagoides pteronyssinus, the most widespread HDM species. First, assays using non-specific protein substrates on purified fecal and body extracts determined that body-associated activity is almost exclusively dependent on cysteine proteases, and specifically on major allergen Der p 1. By contrast, cysteine and serine proteases contributed similarly to the activity estimated on fecal extracts. Second, the screening of group-specific peptide-based protease inhibitors followed by ingestion bioassays revealed that the human skin-derived cysteine protease inhibitor cystatin A produces a significant reduction in mite feeding (i.e. excreted guanine), and triggers the overproduction of Der p 1 (3-fold increase by ELISA). Noteworthy, the inhibition of cysteine proteases by cystatin A also resulted in a reduction in three non-target serine protease activities. Further incubation of these extracts with exogenous Der p 1, but not with other commercial cysteine proteases, restored trypsin (Der p 3) and chymotrypsin (Der p 6) activities, indicating that Der p 1 is responsible for their activation in vivo. Finally, the role of serine proteases on the mite's digestive physiology is discussed based on their remarkable activity in fecal extracts and the autocoprophagic behavior reported in mites in this study.
Keywords: Allergens; Coprophagy; Guanine; Immunotherapy; Protease inhibitors; Zymogen activation.
Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.