Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution

Microbiol Spectr. 2021 Sep 3;9(1):e0031121. doi: 10.1128/Spectrum.00311-21. Epub 2021 Jul 21.

Abstract

Bacillus mycoides is poorly known despite its frequent occurrence in a wide variety of environments. To provide direct insight into its ecology and evolutionary history, a comparative investigation of the species pan-genome and the functional gene categorization of 35 isolates obtained from soil samples from northeastern Poland was performed. The pan-genome of these isolates is composed of 20,175 genes and is characterized by a strong predominance of adaptive genes (∼83%), a significant amount of plasmid genes (∼37%), and a great contribution of prophages and insertion sequences. The pan-genome structure and phylodynamic studies had suggested a wide genomic diversity among the isolates, but no correlation between lineages and the bacillus origin was found. Nevertheless, the two B. mycoides populations, one from Białowieża National Park, the last European natural primeval forest with soil classified as organic, and the second from mineral soil samples taken in a farm in Jasienówka, a place with strong anthropogenic pressure, differ significantly in the frequency of genes encoding proteins enabling bacillus adaptation to specific stress conditions and production of a set of compounds, thus facilitating their colonization of various ecological niches. Furthermore, differences in the prevalence of essential stress sigma factors might be an important trail of this process. Due to these numerous adaptive genes, B. mycoides is able to quickly adapt to changing environmental conditions. IMPORTANCE This research allows deeper understanding of the genetic organization of natural bacterial populations, specifically, Bacillus mycoides, a psychrotrophic member of the Bacillus cereus group that is widely distributed worldwide, especially in areas with continental cold climates. These thorough analyses made it possible to describe, for the first time, the B. mycoides pan-genome, phylogenetic relationship within this species, and the mechanisms behind the species ecology and evolutionary history. Our study indicates a set of functional properties and adaptive genes, in particular, those encoding sigma factors, associated with B. mycoides acclimatization to specific ecological niches and changing environmental conditions.

Keywords: Bacillus mycoides; adaptation; environment; insertion sequences; pan-genome; phages; plasmids; sigma factors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anthropogenic Effects
  • Bacillus / classification
  • Bacillus / genetics*
  • Bacillus / isolation & purification
  • Bacillus / physiology*
  • Biological Evolution*
  • DNA Transposable Elements
  • Ecology*
  • Genome, Bacterial
  • Genomics
  • High-Throughput Nucleotide Sequencing
  • Phylogeny
  • Plasmids / genetics
  • Sigma Factor
  • Soil
  • Soil Microbiology
  • Species Specificity

Substances

  • DNA Transposable Elements
  • Sigma Factor
  • Soil

Supplementary concepts

  • Bacillus mycoides