3 H-Pyrazolo[4,3- f]quinoline-Based Kinase Inhibitors Inhibit the Proliferation of Acute Myeloid Leukemia Cells In Vivo

J Med Chem. 2021 Aug 12;64(15):10981-10996. doi: 10.1021/acs.jmedchem.1c00330. Epub 2021 Jul 21.

Abstract

The 3H-pyrazolo[4,3-f]quinoline moiety has been recently shown to be a privileged kinase inhibitor core with potent activities against acute myeloid leukemia (AML) cell lines in vitro. Herein, various 3H-pyrazolo[4,3-f]quinoline-containing compounds were rapidly assembled via the Doebner-Povarov multicomponent reaction from the readily available 5-aminoindazole, ketones, and heteroaromatic aldehydes in good yields. The most active compounds potently inhibit the recombinant FLT3 kinase and its mutant forms with nanomolar IC50 values. Docking studies with the FLT3 kinase showed a type I binding mode, where the 3H-pyrazolo group interacts with Cys694 in the hinge region. The compounds blocked the proliferation of AML cell lines harboring oncogenic FLT3-ITD mutations with remarkable IC50 values, which were comparable to the approved FLT3 inhibitor quizartinib. The compounds also inhibited the growth of leukemia in a mouse-disseminated AML model, and hence, the novel 3H-pyrazolo[4,3-f]quinoline-containing kinase inhibitors are potential lead compounds to develop into anticancer agents, especially for kinase-driven cancers.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • Humans
  • Leukemia, Myeloid, Acute / drug therapy*
  • Leukemia, Myeloid, Acute / metabolism
  • Leukemia, Myeloid, Acute / pathology
  • Molecular Structure
  • Protein Kinase Inhibitors / chemical synthesis
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology*
  • Structure-Activity Relationship
  • Tumor Cells, Cultured
  • fms-Like Tyrosine Kinase 3 / antagonists & inhibitors*
  • fms-Like Tyrosine Kinase 3 / metabolism

Substances

  • Antineoplastic Agents
  • Protein Kinase Inhibitors
  • FLT3 protein, human
  • fms-Like Tyrosine Kinase 3