Near-infrared persistent luminescent (or afterglow) nanoparticles with the biologically appropriate size are promising materials for background-free imaging applications, while the conventional batch synthesis hardly allows for reproducibility in controlling particle size because of the random variations of reaction parameters. Here, highly efficient chemistry was matched with an automated continuous flow approach for directly synthesizing differently sized ZnGa2O4:Cr3+ (ZGC) nanoparticles exhibiting long persistent luminescence. The key flow factors responsible for regulating the particle formation process, especially the high pressure-temperature and varied residence time, were investigated to be able to tune the particle size from 2 to 6 nm and to improve the persistent luminescence. Upon silica shell encapsulation of the nanoparticles accompanied by an annealing process, the persistent luminescence of the resulting particles was remarkably enhanced. High-fidelity automated flow chemistry demonstrated here offers an alternative for producing ZGC nanoparticles and will be helpful for other compositionally complex metal oxide nanoparticles.