Glutaraldehyde-crosslinked chitosan microparticles (CGP) prepared via the inversed-phase emulsification were successively modified by epichlorohydrin (ECH) and amidinothiourea (AT) as novel adsorbent (CGPET) for selective removal of Hg(II) in solution. FTIR, EA, XPS, SEM-EDX, TG, DTG, and XRD results indicated that CGPET had ample -NH2 and CS, relative rough surface, mean diameter of ~40 μm, great thermal stability, and crystalline degree of 2.4%, beneficial to the uptake of Hg(II). The optimum parameters (pH 5, dosage 1 g/L, contact time 4 h, and initial concentration 150 mg/L) were acquired via batches of adsorption experiments. Adsorption behavior was well described by the Liu isothermal and pseudo-second-order kinetics models, and the maximum adsorption capacity was 322.51 mg/g, surpassing many reported adsorbents. Regeneration and coexisting-ion tests demonstrated that CGPET had outstanding reusability (Rr > 86.89% at the fifth cycle) and selectivity (Rs > 93%). Besides, its potential adsorption sites and mechanisms were proposed.
Keywords: Adsorption mechanism; Amidinothiourea; Chitosan-based microparticle; Hg(II); Selective adsorption.
Copyright © 2021 Elsevier Ltd. All rights reserved.