Identification of Potential Signatures and Their Functions for Acute Lymphoblastic Leukemia: A Study Based on the Cancer Genome Atlas

Front Genet. 2021 Jul 6:12:656042. doi: 10.3389/fgene.2021.656042. eCollection 2021.

Abstract

Objective: Acute lymphoblastic leukemia (ALL) is a malignant disease most commonly diagnosed in adolescents and young adults. This study aimed to explore potential signatures and their functions for ALL.

Methods: Differentially expressed mRNAs (DEmRNAs) and differentially expressed long non-coding RNAs (DElncRNAs) were identified for ALL from The Cancer Genome Atlas (TCGA) and normal control from Genotype-Tissue Expression (GTEx). DElncRNA-microRNA (miRNA) and miRNA-DEmRNA pairs were predicted using online databases. Then, a competing endogenous RNA (ceRNA) network was constructed. Functional enrichment analysis of DEmRNAs in the ceRNA network was performed. Protein-protein interaction (PPI) network was then constructed. Hub genes were identified. DElncRNAs in the ceRNA network were validated using Real-time qPCR.

Results: A total of 2,903 up- and 3,228 downregulated mRNAs and 469 up- and 286 downregulated lncRNAs were identified for ALL. A ceRNA network was constructed for ALL, consisting of 845 lncRNA-miRNA and 395 miRNA-mRNA pairs. These DEmRNAs in the ceRNA network were mainly enriched in ALL-related biological processes and pathways. Ten hub genes were identified, including SMAD3, SMAD7, SMAD5, ZFYVE9, FKBP1A, FZD6, FZD7, LRP6, WNT1, and SFRP1. According to Real-time qPCR, eight lncRNAs including ATP11A-AS1, ITPK1-AS1, ANO1-AS2, CRNDE, MALAT1, CACNA1C-IT3, PWRN1, and WT1-AS were significantly upregulated in ALL bone marrow samples compared to normal samples.

Conclusion: Our results showed the lncRNA expression profiles and constructed ceRNA network in ALL. Furthermore, eight lncRNAs including ATP11A-AS1, ITPK1-AS1, ANO1-AS2, CRNDE, MALAT1, CACNA1C-IT3, PWRN1, and WT1-AS were identified. These results could provide a novel insight into the study of ALL.

Keywords: acute lymphoblastic leukemia; competing endogenous RNAs; functional enrichment analysis; hub genes interaction; long non-coding RNAs.