More Se Vacancies in Sb2 Se3 under Se-Rich Conditions: An Abnormal Behavior Induced by Defect-Correlation in Compensated Compound Semiconductors

Small. 2021 Sep;17(36):e2102429. doi: 10.1002/smll.202102429. Epub 2021 Jul 26.

Abstract

It was believed that the Se-rich synthesis condition can suppress the formation of deep-level donor defect VSe (selenium vacancy) in Sb2 Se3 and is thus critical for fabricating high-efficiency Sb2 Se3 solar cells. However, here it is shown that by first-principles calculations the density of VSe increases unexpectedly to 1016 cm-3 when the Se chemical potential increases, so Se-rich condition promotes rather than suppresses the formation of VSe . Therefore, high density of VSe is thermodynamically inevitable, no matter under Se-poor or Se-rich conditions. This abnormal behavior can be explained by a physical concept "defect-correlation", i.e., when donor and acceptor defects compensate each other, all defects become correlated with each other due to the formation energy dependence on Fermi level which is determined by densities of all ionized defects. In quasi-1D Sb2 Se3 , there are many defects and the complicated defect-correlation can give rise to abnormal behaviors, e.g., lowering Fermi level and thus decreasing the formation energy of ionized donor VSe 2+ in Se-rich Sb2 Se3 . Such behavior exists also in Sb2 S3 . It explains the recent experiments that the extremely Se-rich condition causes the efficiency drop of Sb2 Se3 solar cells, and demonstrates that the common chemical intuition and defect engineering strategies may be invalid in compensated semiconductors.

Keywords: Sb 2Se 3; compound semiconductors; defect engineering; donor-acceptor compensation; first-principles calculation.