Phonon-assisted relaxation between triplet and singlet states in a self-assembled double quantum dot

Sci Rep. 2021 Jul 27;11(1):15256. doi: 10.1038/s41598-021-94621-7.

Abstract

We study theoretically phonon-induced spin dynamics of two electrons confined in a self-assembled double quantum dot. We calculate the transition rates and time evolution of occupations for the spin-triplet and spin-singlet states. We characterize the relative importance of various relaxation channels, including two-phonon processes, as a function of the electric and magnetic fields. The simulations are based on a model combining the eight-band [Formula: see text] method and configuration-interaction approach. We show that the electron g-factor mismatch between the Zeeman doublets localized on different dots opens a relatively fast triplet-singlet phonon-assisted relaxation channel. We also demonstrate, that the relaxation near the triplet-singlet anticrossing is slowed down up to several orders of magnitude due to vanishing of some relaxation channels.