Colorectal cancer (CRC) is one of the most common cancers worldwide, in which adenomatous polyposis coli (APC) mutations are frequently and uniquely observed. Here we find that cis-HOX (circular RNA stabilizing HOXC10) is robustly expressed in colorectal tumor-initiating cells (TICs). cis-HOX knockout decreases colorectal TIC numbers and impairs the self-renewal, tumorigenesis, and metastatic capacities of TICs, whereas cis-HOX overexpression drives colorectal TIC self-renewal and metastasis. Mechanistically, cis-HOX binds to HOXC10 mRNA to attenuate its decay through blocking the K-homology splicing regulatory protein (KSRP)-binding sequence of HOXC10 3' UTR. HOXC10 is highly expressed in colorectal tumors and TICs and triggers Wnt/β-catenin activation by activating FZD3 expression. HOXC10 inhibitor salinomycin exerts efficient therapeutic effects in APC-wild-type colorectal tumors, but not in tumors with APC nonsense mutations. Therefore, the cis-HOX-HOXC10 pathway drives colorectal tumorigenesis, stemness, and metastasis and serves as a potential therapeutic target for APC-wild-type colorectal tumors.
Keywords: APC mutation; FZD3; HOXC10; KSRP; cis-HOX; colorectal cancer; metastasis; self-renewal; tumor initiating cells.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.