As the microbiome is composed of a variety of microbial interactions, it is imperative in microbiome research to identify a microbial sub-community that collectively conducts a specific function. However, current methodologies have been highly limited to analyzing conditional abundance changes of individual microorganisms without considering group-wise collective microbial features. To overcome this limitation, we developed a network-based method using nonnegative matrix factorization (NMF) to identify functional meta-microbial features (MMFs) that, as a group, better discriminate specific environmental conditions of samples using microbiome data. As proof of concept, large-scale human microbiome data collected from different body sites were used to identify body site-specific MMFs by applying NMF. The statistical test for MMFs led us to identify highly discriminative MMFs on sample classes, called synergistic MMFs (SYMMFs). Finally, we constructed a SYMMF-based microbial interaction network (SYMMF-net) by integrating all of the SYMMF information. Network analysis revealed core microbial modules closely related to critical sample properties. Similar results were also found when the method was applied to various disease-associated microbiome data. The developed method interprets high-dimensional microbiome data by identifying functional microbial modules on sample properties and intuitively representing their systematic relationships via a microbial network.