Single and combined effects of microplastics, pyrethroid and food resources on the life-history traits and microbiome of Chironomus riparius

Environ Pollut. 2021 Nov 15:289:117848. doi: 10.1016/j.envpol.2021.117848. Epub 2021 Jul 26.

Abstract

There is growing evidence of widespread contamination of freshwater ecosystems with microplastics. However, the effects of chronic microplastic ingestion and its interaction with other pollutants and stress factors on the life-history traits and the host-microbiome of aquatic invertebrates are not well understood. This study investigates the effects of exposure to sediment spiked with 1 μm polystyrene-based latex microplastic spheres, an environmentally realistic concentration of a pyrethroid pesticide (esfenvalerate), and a combination of both treatments on the life-history traits of the benthic-dwelling invertebrate, Chironomus riparius and its microbial community. The chironomid larvae were also exposed to two food conditions: abundant or limited food in the sediment, monitored for 28 and 34 days respectively. The microplastics and esfenvalerate had negative effects on adult emergence and survival, and these effects differed between the food level treatments. The microbiome diversity was negatively affected by the exposure to microplastics, while the relative abundances of the four top phyla were significantly affected only in the high food level treatment. Although the combined exposure to microplastics and esfenvalerate showed some negative effects on survival and emergence, there was little evidence for synergistic effects when compared to the single exposure. The food level affected all life-history traits and the microbiota, and lower food levels intensified the negative effects of the exposure to microplastics, esfenvalerate and their combination. We argue that these pollutants can affect crucial life-history traits such as successful metamorphosis and the host-microbiome. Therefore, it should be taken into consideration for toxicological assessment of pollutant acceptability. Our study highlights the importance of investigating possible additive and synergic activities between stressors to understand the effects of pollutants in the life story traits and host-microbiome.

Keywords: Development time; Ecotoxicology; Emergence; Esfenvalerate; Multiple stressors; Survival.

MeSH terms

  • Animals
  • Chironomidae*
  • Microbiota*
  • Microplastics
  • Plastics / toxicity
  • Pyrethrins* / toxicity
  • Water Pollutants, Chemical* / analysis
  • Water Pollutants, Chemical* / toxicity

Substances

  • Microplastics
  • Plastics
  • Pyrethrins
  • Water Pollutants, Chemical