Evaluating Ovonic Threshold Switching Materials with Topological Constraint Theory

ACS Appl Mater Interfaces. 2021 Aug 11;13(31):37398-37411. doi: 10.1021/acsami.1c10131. Epub 2021 Aug 2.

Abstract

The physical properties of ovonic threshold switching (OTS) materials are of great interest due to the use of OTS materials as selectors in cross-point array nonvolatile memory systems. Here, we show that the topological constraint theory (TCT) of chalcogenide glasses provides a robust framework to describe the physical properties of sputtered thin film OTS materials and electronic devices. Using the mean coordination number (MCN) of an OTS alloy as a comparative metric, we show that changes in data trends from several measurements are signatures of the transition from a floppy to a rigid glass network as described by TCT. This approach provides a means to optimize OTS selector materials for device applications using film-level measurements.

Keywords: OTS; chalcogenide glasses; cross-point memory; mean coordination number; ovonic threshold switch; topological constraint theory.