Akirins, highly conserved nuclear factors, regulate diverse physiological processes such as innate immunity. The biological functions of Akirins have extensively been studied in vertebrates and many invertebrates; however, there is no report so far on lepidopteran insects. In the present study, we identified and characterized a novel Akirin from the silkworm, Bombyx mori (designated as BmAkirin), and explored its potential roles in innate immunity. The expression analysis revealed the unequal mRNA levels of BmAkirin in all the tested tissues; however, the gene's transcription level was highest in testis, followed by ovaries and hemocytes. It also had significant expression levels at the early stages of embryonic development. Expression of BmAkirin in fat bodies and hemocytes exhibited an increase in various degrees when challenged with virus, fungus, Gram-negative bacteria, and Gram-positive bacteria. Immunofluorescence analysis showed BmAkirin protein was prominently localized in the nucleus. Knockdown of BmAkirin strongly reduced the expression of AMPs and decreased the survival ability of larva upon immune stimulation. Moreover, the bacterial clearance ability of larvae was also decreased following the depletion of BmAkirin. Collectively, our results demonstrate that BmAkirin plays an indispensable role in the innate immunity of Bombyx mori (B. mori) by positively modulating AMPs expression in vivo.
Keywords: Antimicrobial peptides; BmAkirin; Immune response; Silkworm.
Copyright © 2021. Published by Elsevier B.V.