Micro/nano-precision glass molding (MNPGM) is an efficient approach for manufacturing micro/nanostructured glass components with intricate geometry and a high-quality optical finish. In MNPGM, the mold, which directly imprints the desired pattern on the glass substrate, is a key component. To date, a wide variety of mold inserts have been utilized in MNPGM. The aim of this article is to review the latest advances in molds for MNPGM and their fabrication methods. Surface finishing is specifically addressed because molded glass is usually intended for optical applications in which the surface roughness should be lower than the wavelength of incident light to avoid scattering loss. The use of molds for a wide range of molding temperatures is also discussed in detail. Finally, a series of tables summarizing the mold fabrication methods, mold patterns and their dimensions, anti-adhesion coatings, molding conditions, molding methods, surface roughness values, glass substrates and their glass transition temperatures, and associated applications are presented. This review is intended as a roadmap for those interested in the glass molding field.
Keywords: anti-adhesion coating; glass transition temperature; micro/nano-precision glass molding; mold materials; surface roughness.