Enhancement of ecosystem carbon uptake in a dry shrubland under moderate warming: The role of nitrogen-driven changes in plant morphology

Glob Chang Biol. 2021 Nov;27(21):5629-5642. doi: 10.1111/gcb.15823. Epub 2021 Aug 16.

Abstract

Net ecosystem CO2 exchange is the result of net carbon uptake by plant photosynthesis and carbon loss by soil and plant respiration. Temperature increases due to climate change can modify the equilibrium between these fluxes and trigger ecosystem-climate feedbacks that can accelerate climate warming. As these dynamics have not been well studied in dry shrublands, we subjected a Mediterranean shrubland to a 10-year night-time temperature manipulation experiment that analyzed ecosystem carbon fluxes associated with dominant shrub species, together with several plant parameters related to leaf photosynthesis, leaf morphology, and canopy structure. Under moderate night-time warming (+0.9°C minimum daily temperature, no significant reduction in soil moisture), Cistus monspeliensis formed shoots with more leaves that were relatively larger and denser canopies that supported higher plant-level photosynthesis rates. Given that ecosystem respiration was not affected, this change in canopy morphology led to a significant enhancement in net ecosystem exchange (+47% at midday). The observed changes in shoot and canopy morphology were attributed to the improved nutritional state of the warmed plants, primarily due to changes in nitrogen cycling and higher nitrogen resorption efficiency in senescent leaves. Our results show that modifications in plant morphology triggered by moderate warming affected ecosystem CO2 fluxes, providing the first evidence for enhanced daytime carbon uptake in a dry shrubland ecosystem under experimental warming.

Keywords: Cistus monspeliensis; canopy photosynthesis; dry shrubland; experimental warming; net ecosystem exchange; nutrient limitations; shoot size; temperature limitations to plant growth.

MeSH terms

  • Carbon Cycle
  • Carbon Dioxide
  • Carbon*
  • Climate Change
  • Ecosystem*
  • Nitrogen
  • Photosynthesis
  • Plant Leaves
  • Soil

Substances

  • Soil
  • Carbon Dioxide
  • Carbon
  • Nitrogen