Dissociative Carbamate Exchange Anneals 3D Printed Acrylates

ACS Appl Mater Interfaces. 2021 Aug 18;13(32):38680-38687. doi: 10.1021/acsami.1c09373. Epub 2021 Aug 9.

Abstract

Relative to other additive manufacturing modalities, vat photopolymerization (VP) offers designers superior surface finish, feature resolution, and throughput. However, poor interlayer network formation can limit a VP-printed part's tensile strength along the build axis. We demonstrate that the incorporation of carbamate bonds capable of undergoing dissociative exchange reactions provides improved interlayer network formation in VP-printed urethane acrylate polymers. In the presence of dibutyltin dilaurate catalyst, the exchange of these carbamate bonds enables rapid stress relaxation with an activation energy of 133 kJ/mol, consistent with a dissociative bond exchange process. Annealed XY tensile samples containing a catalyst demonstrate a 25% decrease in Young's modulus, attributed to statistical changes in network topology, while samples without a catalyst show no observable effect. Annealed ZX tensile samples printed with layers perpendicular to tensile load demonstrate an increase in elongation at break, indicative of self-healing. The strain at break for samples containing a catalyst increases from 33.9 to 56.0% after annealing but decreases from 48.1 to 32.1% after annealing in samples without a catalyst. This thermally activated bond exchange process improves the performance of VP-printed materials via self-healing across layers and provides a means to change Young's modulus after printing. Thus, the incorporation of carbamate bonds and appropriate catalysts in the VP-printing process provides a robust platform for enhancing material properties and performance.

Keywords: 3D printing; additive manufacturing; covalent adaptable network; dissociative carbamate exchange; polyurethane; vat photopolymerization.