Transcranial magnetic stimulation (TMS) is a common tool used to measure the behavior of motor circuits in healthy and neurologically impaired populations. TMS is used extensively to study motor control and the response to neurorehabilitation of the upper extremities. However, TMS has been less utilized in the study of lower extremity postural and walking-specific motor control. The limited use and the additional methodological challenges of lower extremity TMS assessments have contributed to the lack of consistency in lower extremity TMS procedures within the literature. Inspired by the decreased ability to record lower extremity TMS motor evoked potentials (MEP), this methodological report details steps to enable post-stroke TMS assessments in a standing posture. The standing posture allows for the activation of the neuromuscular system, reflecting a state more akin to the system's state during postural and walking tasks. Using dual-top force plates, we instructed participants to equally distribute their weight between their paretic and non-paretic legs. Visual feedback of the participants' weight distribution was provided. Using image guidance software, we delivered single TMS pulses via a double-cone coil to the participants' lesioned and non-lesioned hemispheres and measured the corticomotor response of the paretic and non-paretic tibialis anterior and soleus muscles. Performing assessments in the standing position increased the TMS response rate and allowed for the use of the lower stimulation intensities compared to the standard sitting/resting position. Utilization of this TMS protocol can provide a common approach to assess the lower extremity corticomotor response post-stroke when the neurorehabilitation of postural and gait impairments are of interest.