Refining the N-Termini of the SARS-CoV-2 Spike Protein and Its Discrete Receptor-Binding Domain

J Proteome Res. 2021 Sep 3;20(9):4427-4434. doi: 10.1021/acs.jproteome.1c00349. Epub 2021 Aug 11.

Abstract

Previous work employing five SARS-CoV-2 spike protein receptor-binding domain (RBD) constructs, comprising versions originally developed by Mt. Sinai or the Ragon Institute and later optimized in-house, revealed potential heterogeneity which led to questions regarding variable seropositivity assay performance. Each construct was subjected to N-deglycosylation and subsequent intact mass analysis, revealing significant deviations from predicted theoretical mass for all five proteins. Complementary tandem MS/MS analysis revealed the presence of an additional pyroGlu residue on the N-termini of the two Mt. Sinai RBD constructs, as well as on the N-terminus of the full-length spike protein from which they were derived, thus explaining the observed mass shift and definitively establishing the spike protein N-terminal sequence. Moreover, the observed mass additions for the three Ragon Institute RBD constructs were identified as variable N-terminal cleavage points within the signal peptide sequence employed for recombinant expression. To resolve this issue and minimize heterogeneity for further seropositivity assay development, the best-performing RBD construct was further optimized to exhibit complete homogeneity, as determined by both intact mass and tandem MS/MS analysis. This new RBD construct has been validated for seropositivity assay performance, is available to the greater scientific community, and is recommended for use in future assay development.

Keywords: COVID-19; SARS-CoV-2; bottom-up proteomics; intact mass; mass spectrometry; spike protein.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19*
  • Humans
  • Protein Binding
  • Protein Domains
  • SARS-CoV-2
  • Spike Glycoprotein, Coronavirus* / genetics
  • Spike Glycoprotein, Coronavirus* / metabolism
  • Tandem Mass Spectrometry

Substances

  • Spike Glycoprotein, Coronavirus
  • spike protein, SARS-CoV-2